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Abstract

We propose a diagnostic algorithm for the case where a distributed system specification

(implementation) is given in the form of communicating finite state machines (CFSMs).  Such an

algorithm localizes the faulty transition in the distributed system once the fault has been detected.

It generates, if necessary, additional diagnostic test cases which depend on the observed

symptoms and which permit the location of the detected fault. The algorithm guarantees the

correct diagnosis of any single (output or transfer) fault in a system of communicating FSMs. A

simple example is used to demonstrate the functioning of the different steps of the proposed

diagnostic algorithm.

1. Introduction

Testing is an important step in the development cycle of any system (i.e. software,

communication protocol or hardware). A lot of research work has been directed towards such

tests [Fuji 91, More 90, Davi 88, Sabn 88, Ural 87, Nait 81, Chow 78, Gone 70]. At the same

time, in the software domain where a system may be represented by an FSM model, very little

work has been done for diagnostic and fault localization problems [Ghed 92, Ghed 92a, Koka

90, Kore 88]. Diagnostic is a well documented subject in other areas such as Artificial

Intelligence (AI), complex mechanical systems and medicine [Scho 76]. Therefore, most of the

concepts and terms used in this paper are imported from those domains.

In model-based diagnostics [Klee 87, Reit 87], we assume the availability of the real system (i.e,

implementation) which can be observed, and its model (i.e, specification) from which predictions

can be made about its behavior. It is necessary to know how the system or the machine under test

is supposed to work in order to be able to know why it is not working correctly.
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Often the specification of a model-based system is described in a structured manner. Therefore, a

system is seen as a set of components connected to each other in a specific way. In order to

diagnose this kind of systems,  models and their corresponding systems are assumed to have the

same components and the same structure. Observations of inputs and outputs show how the

system is behaving, while expectations, derived from its model, tell us how it is supposed to

behave. The differences between expectations and observations, which are called "symptoms",

hint the existence of one or several differences between the model and its system. In order to

explain the observed symptoms, a diagnostic process should be initiated. It consists mainly of

performing the following two tasks: the generation of candidates and the discrimination between

candidates [Klee 87].

Task 1: Generation of candidates:  This process uses the identified symptoms and the

model to deduce some diagnostic candidates. Each diagnostic candidate is defined to be the

minimal difference, between the model and its system, capable of explaining all symptoms. It

indicates the failure of one or several components in the system.

Task 2: Discrimination between candidates: Once the step of candidate generation

terminates, we often end up with a huge number of diagnostic candidates. To reduce their

number, two main techniques are used. The first one consists of the selection of some additional

new tests called "distinguishing tests" [Gene 84]. The second technique consists of

introducing new observation points in the implementation under investigation and executing the

same tests again.

We recall that in general, the diagnostic process is a very complicated task, specially for

diagnosing complicated systems such as the distributed systems. This complexity makes the

achievement of the candidate generation and discrimination tasks harder. In order to solve this

problem, the use of fault models is necessary (see for instance [Boch 91]). Given the hierarchical

system description, corresponding fault models may be established using the different levels of

abstraction. Some of these fault models give all possible failures of each component in the

system. They help to ease the diagnostic procedure, specially by reducing the number of the

different cases which have to be considered, and hence, in reducing the number of diagnoses to

be generated. It is important to note that different fault models may be used during both tasks of

the diagnostic process. In the simplest case and for high level abstractions, the following fault

model, based on the system decomposition into components and connections, may apply during

the candidate generation phase. Each component may either be faulty or operating correctly [Klee

87]. On the other hand, and for lower level abstractions (i.e. gates or transitions levels), different
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uses of precise and more concrete fault models, are recorded in different areas such as the

diagnostics of hardware circuits (i.e, stuck at 0/1 fault models) [Stru 89, Klee 89]. These fault

models may be used during the phase of discrimination between candidates. In the software area

and more precisely for FSMs, another simple fault model, based on transfer and output faults of

state transitions, can be used for diagnosing software systems modelled by FSMs [Chow 78,

Vuon 90, Ghed 92]. The same fault model is also used for the diagnostic approach presented in

this paper.

The  remainder  of  the  paper  is  organized  as  follows. In  Section 2, the model of

communicating finite state machines and a corresponding fault model are introduced. Section 3

includes all the details of an approach for the diagnostic of distributed systems implementations

represented by the CFSMs model . In Section 4, an application example explaining the steps of

the proposed diagnostic algorithm is provided. Section 5, finally, contains a concluding

discussion and points for future research.

2.  Communicating Finite State Machines

2.1 Principles of the CFSMs model

A system of communicating finite state machines with distributed ports consists of

a finite number of deterministic finite state machines which communicate with each other through

input queues in addition to their communication with the environment through their respective

external ports.

Definition 1: A deterministic FSM M i (i = 1, 2,...N)  in a system of CFSMs  can be

represented  by a  quintuple  (Si, Ii, Yi, Ti, Oi) where :

N: Number of FSMs in the system,

Si : Set of states of Mi. It includes an initial state si0,

Ii : Set of input symbols. It includes the reset input (r),

Yi : Set of output symbols. It includes the null output (-),

Ti : Next-state function, Si x Ii --> Si,

Oi : Output function,  Si x Ii --> Yi.

In this paper, we describe the diagnostic problem and a proposed solution for N = 2. We assume

that each machine in the distributed system has a separate external port through which input and

output symbols are communicated between the machine and the external world. In addition, the
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two machines are connected to each other by two one way internal queues: one input queue for

each machine in the system.

For each deterministic FSM in a system of CFSMs, we distinguish two types of transitions. The

first type is called "external-output transitions" or simply "transitions". It is the kind of

transitions which deliver their outputs to a corresponding external port. The second type is called

"internal-output transitions". They are those transitions which communicate their outputs to

another machine, instead of communicating them to the external port of the corresponding

machine. A possible way to distinguish the two types of transitions is by using two distinct sets

of inputs for their execution. The first set IEO, called "inputs for external outputs",

contains input symbols which can be applied to only external-output transitions. The second set

IIO, called "inputs for internal outputs", contains inputs which can be applied only to

internal-output transitions. In the following sections, we make use of this type of input sets for

each machine in the system.

Each time an input symbol is applied to a machine in the system, we assume that enough time is

given to observe its effect, which will be an output interaction in one of the existing external

ports. Hence, the application of the next external input should be preceded by the observation of

the output implied by the previous input. Therefore, only one message will be circulating in the

whole system at any time. Such an assumption, which we call "the synchronization

assumption", guarantees the deterministic behavior of the global system. Related issues to the

synchronization problem are discussed in more details in [Sari 84]. With such an assumption,

only one global sequence of output symbols is expected for a given global sequence of input

symbols (i.e., a mixture of input symbols belonging to both machines). A possible way of

implementing such a feature, is by providing some coordinating procedures between the different

external ports of the system.

From the above described model, it is obvious that the execution of an internal-output transition

in one machine implies the execution of another transition in the other machine. If the later

transition is also an internal-output one, a third transition will be executed in the starting machine,

before any output is observed in any of the ports. This process will continue until an external-

output transition is invoked. In such a case, the output of that last transition will be observed in

the external port of the machine to which that transition belongs. Because of the complexity of

the diagnostic process, we restrict ourselves to the study of systems where the execution of an

internal-output transition in one machine will only imply the execution of an external-output

transition in the other machine. In other words, the set of output symbols of internal-output
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transitions in one machine should be a subset in the set of inputs of external-output transitions in

the other machine. Hence, for a pair (Internal-output transition, external-output transition) of

transitions provoked by a single internal input, the output of the first transition is hidden (since it

is communicated to an internal queue instead of an external port), while the output of the second

one must be  observable.

We assume that the input alphabet Ii, of a machine Mi (i = 1, 2) in a system of CFSMs, is

formed by two subsets (i.e, Ii = IEOi ∪ IIOi, where IEOi ∩ IIOi = ∅). The first subset IEOi

represents the input symbols, for external-output transitions of Mi, which might be applied from

the corresponding external port Pi. IEOi includes a subset "IEOqi" containing input symbols,

for some external-output transitions, which might be received from the queue qi instead of the

external port Pi. The second subset IIOi represents input symbols, for the internal-output

transitions of Mi, which are also applied from the external port Pi. Similarly, the set of output

symbols Oi of a machine Mi can be seen as the union of two subsets (i.e,  Oi = OEOi ∪
OIOqj). The first subset OEOi is formed by the output symbols generated by external-output

transitions of Mi and addressed to Mi external port Pi. The second subset OIOqj is formed by

output symbols generated by internal-output transitions of Mi and addressed to the input queue qj

of machine Mj. It is important to note that the input subset IEOqi of machine Mi is equal to the

output subset OIOqi of machine Mj. From the implementation point of view, the input symbols

of the subset IEOqi (if received from the queue qi) and  the output symbols of the subset OIOqj

of a machine Mi are hidden and can not be observed by an external observer.

A graphic representation of an CFSMs example, in the form of state transition diagram, is

given in  Figure 1 where a system of two communicating machines with two distributed ports is

presented. Each machine has an external port for both external input and output interactions and

one input queue which receives messages sent by the other machine. Internal transitions are

shown in bold lines and external-output transitions are shown in simple lines.

For the example in Figure 1, we have the following sets of inputs and outputs for both machines:

IEO1 = {b, e};  IIO1 = {a}; IEOq1 = {b, e}; I1 = IEO1 ∪ IIO1  ==> I1 = {a, b, e}

IEO2 = {b, f};  IIO2 = {c}; IEOq2 = {f}; I2 = IEO2 ∪ IIO2  ==> I2 = {b, c, f}

OEO1 = {c, f};  OIOq2 = {f}; O1 = OEO1 ∪ OIOq2 ==> O1 = {c, f}
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OEO2 = {a, e};  OIOq1 = {b, e};                O2 = OEO2 ∪ OIOq1 ==> O2  = {a, b,e}
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Figure 1: A state transition diagram of a two CFSMs

2.2 The CFSMs fault model

The CFSMs fault model is based on errors and faults made on labeled transitions of the

machines. Some of these faults, which are essential for the CFSM-based diagnostic approach

discussed in Section 3, are defined as follows:

Definition 2: Output fault: We say that a transition has an output fault if, for the

corresponding state and received input, the implementation provides an output different from the

one specified by the output function.

An implementation has a single output fault if, one and only one of its transitions has an

output fault.

Definition 3: Transfer fault: We say that a transition has a transfer fault if, for the

corresponding state and received input, the implementation enters a different state than specified

by the Next-state function.



7

An implementation has a single transfer fault if, one and only one of its transitions has a

transfer fault.

In the CFSMs model defined in the above subsection, an output can be seen as the composition

of two portions: the message type and the address to which that message is destinated (i.e., the

environment queue or another machine queue). Therefore, output faults can occur in either

components. For our diagnostic approach presented in the following section, we assume the

following fault model: the implementation under test (IUT) may have a single output fault, where

the fault can occur only in the message type component and not in the address component, or a

single transfer fault in one of its machines.

3. The diagnostic approach

In [Ghed 92], we proposed a single fault diagnostic algorithm for systems represented by FSMs.

In this section, we generalize such an algorithm to the case where distributed system

implementations and their models are represented by CFSMs. In such a context, transitions

(which may be faulty) in each machine in the distributed system can be seen as the components

of the general structured system described earlier.

The following algorithm consists of diagnosing (with respect to its specification  CFSMs) an

IUT CFSMs for possible faulty transitions. Its main purpose is to identify the faulty transition

and to determine the type of its fault (i.e. output or transfer). This work is mainly executed

within Step 5 and Step 6 of the following algorithm. In particular, Step 5 might end up with

different diagnostic candidates. In such a case, additional diagnostic tests should be selected in

Step 6, in order to be able to isolate the faulty transition and more precisely to know to which

state (in case of a transfer fault) that transition has transferred.

ALGORITHM:

Step 1: Generation of expected outputs

We assume that a test suite "TS" is given. The test suite consists of a number of test cases which

are sequences of input symbols. We write TS = { tc1; ...; tcp}, where each tci is a test case.

If a test case tci consists of mi inputs: ipi,1,ipi,2,...,ipi,mi, the corresponding sequence of

expected outputs is written as: oi  = og
i,1,og

i,2,...,og
i,mi , where p and g are ports (i.e. p, g =

1,2: external ports in the system) through which interactions get applied or observed and og
i,j is
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expected after input ipi,j. In other words, the input symbols in the test cases and their

corresponding outputs can be applied and observed in different external ports. It is important to

note that the application of an input symbol in a test case might imply the execution of one or two

transitions in both machines, depending on whether that input is external or internal.

Step 2: Execution of test cases
Application of the test suite to the IUT. For each test case tci, a corresponding output sequence is

observed in the ports of the IUT. It is written as: �i  = �g
i,1,�g

i,2,...,�g
i,mi

Definition 4: The transition  Ti,j of the specification machine Mk where the symptom (og
i,j ≠

�g
i,j) has been observed, is called a symptom transition. If we have the same symptom

transition for all symptoms, that transition is called the unique symptom transition (ust).

The observed output generated by the ust, is called the unique symptom output (uso).

Step 3: Generation of symptoms
Compare observed outputs with expected ones and identify all symptoms. Any difference  (og

i,j

≠ �g
i,j) represents a symptom. The faulty output corresponding to a symptom is called a

symptom output.

Step 4: Generation of conflict sets
Algorithm: For each symptom (og

i,j ≠ �g
i,j) and for each machine Ml in the system, determine

its corresponding conflict set. A conflict set for a given symptom is defined to be the set of

transitions which are supposed to participate (through their execution) in the generation of the

symptom output; therefore, at least one of these transitions must be faulty. The conflict set for a
machine Ml is formed by all transitions executed in the Ml specification when the corresponding

test case is applied. No transitions, executed after the observation of the symptom in a test case,

will be included in the conflict set.

Note: In order to continue the diagnostic process, different  approaches might be used

depending on whether the single or the multiple fault hypothesis is made. In the following, we

make the assumption that the IUT has a single fault, either output or transfer.

Step 5: Generation of diagnostic candidates and their diagnoses

Diagnostic candidates are transitions which are suspected to be faulty. Therefore, each one of

them should belong to each of the last step generated conflict sets. It also has to be consistent

with all observations in all initially given test cases.
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Step 5A: Generation of initial tentative candidate sets
Algorithm: For each machine Mi in the system, the initial tentative candidate set "ITCi" will

be formed by the  intersection of all conflict sets of Mi. Each element Tk  in ITCi represents a

tentative candidate transition (with an output or transfer fault) which may explain all symptoms.

Step 5B: The FTC, the ending state and the outputs sets

Algorithm: For each generated initial tentative candidate set ITCi, if there is a unique symptom

transition "usti", it will be contained in the ITCi (i.e, see definition 3). In that case, we split the

ITCi into the set "ustseti", which will initially contain the usti, and the final tentative candidates

set for transitions with transfer faults "FTCtri", which will contain the rest of the transitions in

ITCi. Otherwise, the full ITCi set forms the FTCtri set. A third set, called the final tentative

candidate set for internal-output transitions with output faults "FTCcoi", will be formed by the

internal-output transitions included in ITCi. Each set will be processed separately, as explained in

the following paragraphs.

It is clear from the above steps that at most one of the ustsetis will not be empty. If a usti exists,

the ustseti will be processed as follows. All test cases in the initially given test suite "TS" are

scanned for transitions that are equal to the usti. If for all found transitions their corresponding

observed output is equal to the usoi and for the remaining transitions in the corresponding test

cases all observed and expected outputs are equal, which means the usti explains all

observations, then the usti  is considered a diagnostic candidate for an output fault.

Procedure ust-processing (ustseti)
Forall tcm ∈ TS  DO

Forall ipm,n ∈ tcm DO  {if in ipm,n, (p = i) or ipm,n is an internal input, Ti
m,n is assigned

    the corresponding transition of Mi, otherwise, it is null}

IF  (Ti
m,n = usti) THEN          {usti is the only element of ustseti}

IF (�g
m,n <> usoi) THEN

ustseti = ∅; exit                    {the usti is not a diagnostic candidate}
ELSE IF og

m,n+l <> �g
m,n+l THEN   {l =1, 2, ..., im where n +im is the

                   length of the test case tcm}

                     ustseti = ∅; exit
ENDForall

ENDForall

For each transition Tk in the FTCcois ( i = 1,2), we compute the set of all faulty outputs called

"outputsk", Tk  might generate. For each transition, we consider all outputs in OCqj (i.e. the set
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of output alphabet the internal-output transitions in the machine Mi might generate), with the

exception of the expected output of Tk, one at a time. For each output o under consideration, o

will be included in outputsk, if under the assumption that o is  the output of Tk, the expected and

observed outputs are equal for all succeeding transitions in all test cases.

Procedure findoutputs (FTCcoi);
Forall Tk in FTCcoi Do       {Tk is the k-th internal-output transition in FTCcoi }
outputsk := ∅;                      {outputsk is the set of all faulty outputs Tk might generate }

Forall output o ∈ OCqj and o ≠ Output(Tk) Do
flag := true
Forall tcm ∈ TS  Do

      Forall ipm,n ∈ tcm Do {if in ipm,n, (p = i) or ipm,n is an internal input,

     Ti
m,n is assigned the corresponding transition of Mi, otherwise, it is null}

IF  (Ti
m,n = Tk ) THEN

   OutputÕ(Ti
m,n) = o;

   Apply the test case tcm to the modified specification
   IF (newly expected outputs <> observed outputs) THEN

      flag := false; exit
ENDForall

ENDForall
IF (flag = true) THEN

outputsk := outputsk ∪ {o}
ENDForall

ENDForall

For each transition Tk in the FTCtris (i = 1,2), we compute the set of all faulty transfer states

called "EndStatesk", to which Tk might transfer. For each transition, we consider all states in

the machine, with the exception of the expected NextState of Tk, one at a time. For each state s

under consideration, s will be included in EndStatesk, if under the assumption that s is  the

NextState of Tk, the expected and observed outputs are equal for all succeeding transitions in all

test cases.

Procedure findendingstates (FTCtri);
Forall Tk in FTCtri Do     {Tk is the k-th transition in FTCtri }
EndStatesk := ∅                  {EndStatesk is the set of all states to which Tk might transfer }

Forall state s ∈ S and s ≠ NextState(Tk) Do
flag := true
Forall tcm ∈ TS  Do

      Forall ipm,n ∈ tcm Do {if in ipm,n, (p = i) or ipm,n is an internal input,

     Ti
m,n is assigned the corresponding transition of Mi, otherwise, it is null}

IF  (Ti
m,n = Tk ) THEN

   NextStateÕ(Ti
m,n) = s;

   Apply the test case tcm to the modified specification
   IF (newly expected outputs <> observed outputs) THEN
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      flag := false; exit
      ENDForall
ENDForall
IF (flag = true) THEN

EndStatesk := EndStatesk ∪ {s}
ENDForall

ENDForall

Step 5C: Identification of diagnostic candidates and  generation of diagnoses

Algorithm: In this step we remove all correct (i.e. transitions with empty ending state sets or

empty outputs sets) transitions from the final tentative candidate sets. All transitions in the

resulting "DCtri" sets (if not empty) are diagnostic candidates with transfer faults. For each

transition Tk in the DCtris (i = 1, 2) and for each state sik in the EndStatesk, a diagnose, stating

that Tk might transfer to state sik, is generated. Similarly, all transitions in the resulting "DCcoi"

sets (if not empty) are diagnostic candidates with output faults. For each transition Tk in the

DCcois (i = 1, 2) and for each output oik in the outputsk, a diagnose, stating that Tk might have a

faulty output oik, is generated. An extra diagnose, stating that the usti might have an output fault,

is also generated, if the ustseti is not empty.

Step 6: Additional diagnostic tests

Depending on the results of the previous steps, the following different possibilities might be

present.

Case 1: One of the ustsetis contains the usti transition, the DCtris and the DCcois (i = 1,

2) are empty. In such a case, the usti is the faulty transition with the output fault usoi and no

further diagnostic tests are required.

Case 2: The ustsetis are empty and all of the DCtris and the DCcois (i = 1, 2) are empty,

except one of them which is a singleton with a corresponding singleton ending state set or a

corresponding singleton outputs set. If the DCtri is not empty, its only transition has a transfer

fault to the state in the ending state set, otherwise, the only transition of the DCcoi has a faulty

output included in the corresponding outputs set. No further tests are required.

Case 3: The ustsetis are empty and one or more of the other sets has more than one

element. Therefore, any element of the DCtris or the DCcois (i = 1, 2) might be the faulty

transition. In such a case, we should process the elements of these sets in order to derive further

tests with the purpose of identifying the faulty transition and localizing the exact fault.
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Algorithm for Case 3:
Step (a): For each transition Tk  in the DCtris, additional test cases have to be selected and

executed, in order to be able to know exactly to which state it transfers. These test cases should

have the ability of distinguishing between the different states contained in the corresponding

ending state set "EndStatesk " and possibly the correct ending state of the transition. Therefore, a

"limited characterization set" Wk  has to be computed for the states in EndStatesk and the

correct state. It is different from the characterization set defined in [Chow 78], since it concerns

only a subset of states rather than the whole set of states in the machine. It is formed by

sequences of inputs such that if applied to the machine in one of the states in EndStatesk, the

produced outputs will be different from the outputs obtained if the same input sequences were

applied to the machine in any other state of EndStatesk or the correct state. Each additional test

case is a concatenation of an input sequence, called transfer sequence, required to take the

machine from its initial state to the starting state of Tk, the input for Tk and a sequence of inputs

from the Wk.

Step (b): For the internal-output transitions in the DCcois, a similar approach to Step (a) is

used. Therefore, each additional test case for a transition Tk in a DCcoi is a concatenation of an

input sequence, called transfer sequence, required to take the machine Mi from its initial state to

the starting state of Tk, the input for Tk and a sequence of inputs from "the distinguishing

set" Uk.  The characteristic of the sequences in Uk  is that once incorporated in the additional test

cases, they will have the ability of distinguishing between the different possible outputs which

might be generated by Tk  and communicated to the machine Mj. In other words, if Mj in a state s

receives an input symbol x (i.e. the output of Tk ) from Mi, it will execute a precise

corresponding transition t and will reach a state sÕ, then, a sequence from Uk will be applied to

Mj in state sÕ. If a faulty input symbol xÕ (instead of x) is received by Mj in state s, a different

transition tÕ will be executed and possibly a different output will be generated and a different state

will be reached. Therefore, the different sequences of Uk will identify such an anomaly.

Consequently, if the application of these additional tests generates the expected outputs, the

transition Tk is declared correct and is removed from the DCcoi. When a faulty transition is

found,  the analysis of observed outputs will identify the faulty output of that transition and the

search is stopped.

In order to avoid any ambiguities, the transfer sequence, the limited characterization set and the

distinguishing set should be chosen in such a manner that they do not involve any candidate

transition in any of the DCtris or the DCcois (i = 1, 2) sets. Figure 2 illustrates the progressive

construction of the additional test cases needed to distinguish the faulty transition from the rest of
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the diagnostic candidates of DCtris. A similar picture will illustrate the progressive construction

of additional tests for DCcois.
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Figure 2 : Construction of additional diagnostic tests

The construction of the additional tests is progressive because if the fault is located, the rest of

these additional tests need not be generated, since we work under the single fault hypothesis. If

some of the generated tests are already included in the initially given test suite, this will be taken

into consideration for the analysis of the obtained outputs, but they need not be applied again to

the IUT. If the application of these additional tests generates the expected outputs, the transition

is declared correct and is removed from the corresponding diagnostic candidate set. When a

faulty transition is found,  the analysis of observed outputs identify the wrong transfer or the

wrong output of the transition and the search is stopped.
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Case 4:  One of the ustsetis contains the usti transition and one or more of the other sets

has more than one element. In such a case, we first check the usti transition by generating for it

an additional test case which will imply the execution of a sequence of transitions not included in

any of the sets DCtris and DCcois (i = 1, 2). Such an additional test case should terminate by the

input of usti. If its application  generates the expected output, then the usti is declared correct and

the search for the faulty transition in the other sets has to be done as in Case 3, otherwise, usti is

the transition with an output fault and the search is stopped.

4. An application example

Suppose that the following initial test suite for the two CFSMs specification shown in Figure 1,

is given:

TS = {R,b2,c2,a1,c2,b1;  R,a1,f2,c2,b1; R,b1,c2,a1,b2,e1,f2}

Step 1 and 2: The application of TS to the specification and the implementation (i.e. equal to

the specification with the exception of transition tÕ6 has an output fault) of Figure 1, yields the

expected and observed output sequences, as shown in Table 1.

tc. #���������������������������                   tc1���������������������������         tc2���� �

Input �����������������������R, b2,   c2,     a1,    c2,   b1 ����R,   a1,   f2,   c2,  b1    �R, b1,  c2,    a1,  b2, e 1
 
Spec. transitions    �� tr, t'2, t'6t3,�t7t'4,�t'3t9, t5 ����tr, t1t'1, t'4, t'3t6, �t5 ����tr, t2, t'3t6, t4t'7, t

Expected output ���� -,    a2,   c1,     a2,    c1,    f1����-,   e2,   a2,   f1,   f1���� -,  c1,   f1,    a2,� �
   
Observed output���� -,    a2,    c1,��   a2,��� c1,   c1��� �-,   e2,   a2,   f1,   f1���� -,  c1,   f1,    a2,���e2 ,

Table 1: Test cases and their outputs

In Table 1, a reset transition tr is assumed to be available for both the specification and the

implementation. It resets both machines in the system to their initial states. We use the symbol

"R" to denote the input for such a transition and the symbol "-" to denote its output.

Step 3: A difference between observed and expected outputs is detected for test cases tc1.

Therefore, the symptom is:
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"Symp1 = (o1
1,6 ≠ �1

1,6)" with the symptom transition t5.

Step 4: Corresponding to the above symptom, we generate the following two conflict sets for

both machines:

Conf1
1 =  {t3, t7, t9, t5}, Conf2

1 =  {tÕ2, tÕ6, tÕ4, tÕ3}

Step 5A: Since there is only one conflict set for each machine, no intersection is needed. The

two initial sets of tentative candidates for both machines are the following:

ITC1 =  {t3, t7, t9, t5}, ITC2 =  {tÕ2, tÕ6, tÕ4, tÕ3}

Step 5B: For each  ITCi ( i =1, 2), we generate its corresponding FTCtri, FTCcoi and the

ustseti sets:

FTCtr1 =  {t3, t7, t9}, ustset1 =  {t5}, FTCco1 = {t7}

FTCtr2 =  {tÕ2, tÕ6, tÕ4, tÕ3}, ustset2 = {}, FTCco2 =  {tÕ6, tÕ3}

The processing of the above sets and the computation of the outputs and the ending state sets for

the transitions in FTCtris and FTCcois (i =1, 2) leads to:

ustset1 =  {},

EndStates[t3] = {}, EndStates[t7] = {s0}, EndStates[t9] = {s0, s2}

outputs[t7] = {}

ustset2 =  {},

EndStates[tÕ2] = {s0, s2}, EndStates[tÕ6] = {s2},

EndStates[tÕ4] = {s2}, EndStates[tÕ3] = {}

outputs[tÕ6] = {b}, outputs[tÕ3] = {b}

Step 5C: The transitions with empty ending state sets or empty outputs sets are correct,

therefore they are removed from their final tentative candidate sets. The resulting diagnostic

candidates sets are the following:

DCtr1 =  {t7, t9}, ustset1 =  {}, DCco1 = {}

DCtr2 =  {tÕ2, tÕ6, tÕ4}, ustset2 = {}, DCco2 =  {tÕ6, tÕ3}
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With the use of the ending state sets and the outputs sets generated in Step 5B, the following

diagnoses are deducted:

Diag1: t7 might transfer to state s0 instead of state s2.

Diag2: t9 might transfer to state s0 instead of state s1.

Diag3: t9 might transfer to state s2 instead of state s1.

Diag4: tÕ2 might transfer to state s0 instead of state s1.

Diag5: tÕ2 might transfer to state s2 instead of state s1.

Diag6: tÕ6 might transfer to state s2 instead of state s1.

Diag7: tÕ4 might transfer to state s2 instead of state s0.

Diag8: tÕ6 might have an output fault of b instead of e.

Diag9: tÕ3 might have an output fault of b instead of e.

Step 6: In order to reduce the number of these diagnoses, additional diagnostic tests have to be

selected. Since output faults are in general easier to be tested and require less tests, we start with

Diag8 . As indicated in the proposed algorithm, other diagnostic candidates have to be avoided

from the path of transitions executed by the additional test case. A possible transfer sequence

which will take the machine to the starting state s1 of tÕ6 is "R,f2". After the execution of tÕ6 in

the machine M2 and depending on the generated output, the machine M1 in state s0 will execute t3
or t2 and consequently will transfer to states s2 or s1, respectively. Since t3 and t2 generate the

same output, another input to be applied to machine M1 is needed to distinguish the sates s2 and

s1. A possible input symbol is "b". Therefore, after the application of the additional test case "R,

f2, c2, b1", we observe  "R, e2, c1, f1" as output. Such a result confirms that tÕ6 is faulty and

generates the output "b" instead of "e" as specified. Since it is assumed that there is at most one

fault in IUT, the fault is localized and the remaining diagnoses are discarded.

5. Concluding discussion

In [Ghed 92], we proposed a diagnostic algorithm for systems represented by a single FSM.

Such an algorithm localizes the faulty transition in the system once the fault has been detected. It

generates, if necessary, additional diagnostic test cases which depend on the observed symptoms

and which permit the location of the detected fault. The algorithm guarantees the correct

diagnosis of any single (output or transfer) fault in a system represented by a single FSM. In this

paper, we generalize the diagnostic approach to the case where distributed system specifications
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and implementations are represented by CFSMs. The main differences, in comparison with

[Ghed 92] introduced in  this paper, are the following:

a) Two groups of conflict sets for both machines in the distributed system are generated, instead

of only one in [Ghed 92]. They resulted from the split of the sequences of transitions

corresponding to the test cases where symptoms have been observed. If a symptom is observed

in a test case which does not include internal-output transitions or, it includes internal-output

transitions of only one machine Mi and the symptom transition belongs to the same machine,

conflict sets are generated only for the machine to which the symptom transition belongs. In such

a case, important processing time will be saved in the remaining steps by declaring the other

machine correct. In all other cases, the identification of the faulty transition will precede the

identification of the faulty machine.

b) A new set of special diagnostic candidates might be created for each machine in the system. It

is formed by those internal-output transitions which are candidates for possible output faults.

Such a set and the algorithm for its computation are not needed when systems to be diagnosed

are represented by a single FSM. Consequently, special techniques were added to Step 6 of the

proposed algorithm, in order to generate additional test cases for those candidates suspected for

having output faults.

From an optimization point of view, it is recommended to combine Steps 5 and 6 of the

diagnostic algorithm. In other words, it will be more efficient to process one candidate using

Steps 5B and 5C, then select its additional tests using Step 6 before the processing of the next

candidate. If the application of those tests identifies the faulty transition and localizes its fault,

there will be no need to process the rest of the candidates which will, in general, save us a lot of

computation time. If not, we repeat the same process until the localization of the fault.

Many important questions are left for future work, such as the diagnostic of distributed systems

which are represented by CFSMs and have non-deterministic behaviors. The non-determinism

can be caused by the absence of synchronization between the different queues for the different

machines of the distributed system. The extension of the CFSMs fault model is also

recommended to cover, for example, addressing faults, which are not considered in this paper.

Another important question, is the diagnostic of systems having multiple faults, which is known

to be a very difficult problem. A possible starting point is to try to solve such a question for at

least some special classes of multiple faults.
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